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In Chapters 9 and 10 we explored approximate solutions to the one-electron
Schrodinger equation in the limiting cases of nearly free electrons, and tight binding.
In most cases of interest the tight-binding approximation (at least in the simple form
outlined in Chapter 10) is suitable only for the representation of bands arising from
the ion core levels, while the nearly free electron approximation cannot be directly
applied to any real solid." The purpose of this chapter is therefore to describe some
of the more common methods actually used in the calculation of real band structures.

We remarked in Chapter 8 that in merely writing down a separate Schrodinger
equation?
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for each electron we are already enormously simplifying the actual problem of many

interacting electrons in a periodic potential. In an exact treatment each electron
cannot be described by a wave function determined by a single-particle Schrodinger
equation, independent of all the others.




The independent electron approximation|does not in fact entirely neglect electron-
electron interactions. Rather it assumes that most of their important effects can be
taken into account with a sufficiently clever choice for the periodic potential U(r)
appearing in the one-electron Schrodinger equation. Thus U(r) contains not only the

periodic potential due to the ions alone, but also periodic effects due to the interaction

of the electron (whose wave function appearsin (11.1)) with all the other electrons. The

latter interaction depends on the configuration of the other electrons; i.e., it depends
on their individual wave functions, which are also determined by a Schrodinger
equation of the form (11.1). Thus to know the potential appearing in (11.1), one must
first know all the solutions to (11.1). Since, however, to know the solutions one must
know the potential, one is in for some difficult mathematical efforts.

The simplest (and often the most practical) procedure is to start with a shrewd

guess, U,(r), for U(r), calculate from (11.1) the wave functions for the occupied

electronic levels, and from these recompute U(r). If the new potential, U,(r) is the
same as (or very close to) U,(r), one says that self-consistency has been achieved and
takes U = U, for the actual potential. If U, differs from U, one repeats the procedure
starting with U, taking U, as the actual potential if it is very close to U,, and other-
wise continuing on to the calculation of U;. The hope is that this procedure will
converge, eventually yielding a self-consistent potential that reproduces itself.’




We shall assume in this chapter (as in Chapters 8—10) that the potential U(r) is a
given function; i.e., that we are either engaged in the first step of this iterative procedure
or, by a fortunate guess, are able to work with a reasonably self-consistent U(r) from
the start. The reliability of the methods we are about to describe is limited not only
by the accuracy of the computed solutions to (11.1), which can be quite high, but

also by the accuracy with which we have been able to estimate the potential U(r).

The resulting &,(k) display a disconcerting sensitivity to errors in the construction
of the potential, and it is often the case that the final accuracy of the computed band
structure is limited more by the problem of finding the potential than by the difficulties
in solving the Schrédinger equation (11.1) for a given U. This is strikingly illustrated
in Figure 11.1. -

Another point to emphasize at the start is that none of the methods we shall describe
can be carried through analytically, except in the simplest one-dimensional examples.
All require modern, high-speed computers for their execution. Progress in the theo-
retical calculation of energy bands has kept close pace with development of larger
and faster computers, and the kinds of approximations one is likely to consider are
influenced by available computational techniques.*




Figure 11.1

Energy bands for vanadium, calculated for
two possible choices of crystal potential
U(r). Vanadium is body-centered cubic and
the bands are plotted along the [ 100] direc-
tion from the origin to the Brillouin zone
boundary. The atomic structure of vana-
dium is five electrons around a closed-shell
argon configuration. The bands displayed
are the 3d and 4s derived bands (and higher
bands). (a) The bands are shown as calcu-
lated in a U(r) derived from an assumed
3d*4s* configuration for atomic vanadium.
(b) The bands are shown based on an as-

sumed 3d*4s' atomic configuration. (From
L. F. Matheiss, Phys. Rev. A970 134, (1964).)
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GENERAL FEATURES OF VALENCE-BAND WAVE FUNCTIONS

Since the low-lying core levels are well described by tight-binding wave functions,
calculational methods aim at the higher-lying bands (which may be either filled,
partially filled, or empty). These bands are referred to in this context, in contrast to
the tight-binding core bands, as the valence bands.> The valence bands determine the
electronic behavior of a solid in a variety of circumstances, electrons in the core
levels being inert for many purposes.

The essential difficulty in practical calculations of the valence-band wave functions
and energies is revealed when one asks why the nearly free electron approximation
of Chapter 9 cannot be applied to the valence bands in an actual solid. A simple,

but superficial, reason is that the potential is not small. Very roughly we might estimate
that, at least well within the ion core, U(r) has the coulombic form
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where Z, is the atomic number. The contribution of (11.2) to the Fourier components
Uy in Eq. (9.2) will be (see p. 167 and Eq. (17.73)):
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we see that Ug can be of the order of several electron volts for a very large number
of reciprocal lattice vectors K and is therefore comparable to the kinetic energies
appearing in Eq. (9.2). Thus the assumption that Uy is small compared to these
kinetic energies is not permissible.

A deeper insight into this failure is afforded by considering the nature of the core
and valence wave functions. The core wave functions are appreciable only within the
immediate vicinity of the ion, where they have the characteristic oscillatory form of

atomic wave functions (Figure 11.2a). These oscillations are a manifestation of the
high electronic kinetic energy within the core,® which, in combination with the high

negative potential energy, produces the total energy of the core levels. Since valence
levels have higher total energies than core levels, within the core region, where they
experience the same large and negative potential energy as the core electrons, the
valence electrons must have even higher kinetic energies. Thus within the core
region the valence wave functions must be even more oscillatory than the core
wave functions.
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Figure 11.2

(a)-Characteristic spatial dependence of a core wave function ya“(r). The curve shows Re ¢/
against position along a line of ions. Note the characteristic atomic oscillations in the vicinity
of each ion. The dashed envelope of the atomic parts is sinusoidal, with wavelength 4 = 2x/k.
Between lattice sites the wave function is negligibly small. (b) Characteristic spatial depen-
dence of a valence wave function ,°(r). The atomic oscillations are still present in the core

region. The wave function need not be at all small between lattice sites, but it is likely to be
a5 . el o like 11




This conclusion can also be reached by an apparently different argument:

Eigenstates of the same Hamiltonian with different eigenvalues must be orthogonal.
In particular any valence wave function ¥,’(r) and any core wave function ¥, (r)
must satisfy:

U = fdr i) "), (11.5)

Core wave functions are appreciable only within the immediate vicinity of the ion, so
the main contribution of this integral must come from the core region. It is enough
to consider the contribution to (11.5) from the core region of a single ion, since Bloch’s
theorem ((8.3)) requires the integrand to be the same from cell to cell. Within this

core region ¥, "(r) must have oscillations that carefully interlace with those of all the
Y, (r) in order to cause the integrals (11.5) to vanish for all core levels.




Either of these arguments leads to the conclusion that a valence wave function
should have the form pictured in Figure 11.2b. If, however, the valence wave functions
have an oscillatory structure on the scale of the core region, a Fourier expansion such
as (9.1) must contain many short wavelength plane waves, 1.e., many terms with large
wave vectors. Thus the nearly free electron method, which leads to an approximate
wave function composed of a very small number of plane waves, must be untenable.

In one way or another, all of the calculational methods now in use are attempts
to come to grips with the necessity for reproducing this detailed, atomic-like structure
of the valence wave functions in the core region, while facing the fact that the valence
levels are not of the tight-binding type, and therefore have appreciable wave functions
in the interstitial regions.




THE CELLULAR METHOD

The first serious attempt to calculate band structure (aside from Bloch’s original use
of the tight-binding method) was the cellular method of Wigner and Seitz.” The
method begins by observing that because of the Bloch relation (8.6):

Ui + R) = e Ry (r), (11.6)

it 1s enough to solve the Schrddinger equation (11.1) within a single primitive cell
The wave function can then be determined via (11.6) in any other primitive cell
from its values in C,.

However, not every solution to (11.1) within C, leads in this way to an acceptable
wave function for the entire crystal, since Y(r) and Viy(r) must be continuous as r

crosses the primitive cell boundary.® Because of (11.6), this condition can be phrased
entirely in terms of the values of y within and on the surface of C,. It is this boundary
condition that introduces the wave vector k into the cellular solution, and eliminates
all solutions except those for a discrete set of energies, which are just the band energies

& = & (k).




Boundary conditions within C, are

U(r) = e * ®y(r + R), (11.7)

Ar) - V(r) = —e * Ra(r + R) - Vy(r + R), (11.8)

where r and r + R are both points on the surface of the cell and fi is an outward
normal (see Problem 1).

and

The analytical problem is therefore to solve (11.1) within the primitive cell C,
subject to these boundary conditions. To preserve the symmetry of the crystal, one
takes the primitive cell C, to be the Wigner-Seitz primitive cell (Chapter 4) centered
on the lattice point R = 0.

The foregoing is an exact restatement of the problem. The first approximation of

the cellular method is the replacement of the periodic potential U(r) within the
Wigner-Seitz primitive cell by a potential V(r) with spherical symmetry about the

origin (see Figure 11.3). One might, for example, choose V(r) to be the potential of

a single ion at the origin, ignoring the fact that the neighbors of the origin will also
contribute to U(r) within C,, especially near its boundaries. This approximation is
made entirely for practical reasons, to render a difficult computational problem
more manageable.




Figure 11.3

Equipotentials (i.e., curves of constant U(r) ) within a primitive cell. For the actual crystal potential
these will have spherical symmetry near the center of the cell where the potential is dominated by
the contribution from the central ion. However near the boundary of the cell the potential will

deviate sﬁbstantially from spherical symmetry. The cellular method approximates the potential

by a spherically symmetric one everywhere within the cell, with equipotentials as shown on the
right.




Once a potential has been chosen spherically symmetric inside C,, then within
the primitive cell a complete set of solutions to the Schrodinger equation (11.1) can

be found of the form® |
lplm(r) — lm(e’ ¢)Xl(r)a (11'9)

where Y, (0, ¢) are spherical harmonics and y,(r) satisfies the ordinary differential

equation
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Given the potential V(r) and given any value of &, there is a unique y, , that solves
(11.10) and is regular at the origin.'® These y, ; can be calculated numerically, ordinary
differential equations being easy to handle on machines. Since any linear combination
of solutions to Schrdodinger’s equation with the same energy is itself a solution,

(r,8) = z@ (0, B)x,.4(r) (11.11)

will solve (11.1) at energy & for arbitrary coefficients 4,,.. However, (11.11) will only
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yield an acceptable wave function for the crystal if it satisfies the boundary conditions

(11.7) and (11.8). It is in the imposition of these boundary conditions that the cellular
method makes its next major approximation.




To begin with, one takes only as many terms in the expansion (11.11) as it is
calculationally convenient to handle.** Since there is only a finite number of coeffi-
cients in the expansion, we can, for a general cell, fit the boundary condition only
at a finite set of points on its surface. The imposition of this finite set of boundary
conditions (chosen to be as many as there are unknown coefficients) leads to a set

of k-dependent linear homogeneous equations for the(4,,) and the values of & for

which the determinant of these equations vanishes are the required energies &,(k).

In this way one can search for the eigenvalues &,(k) for each fixed k. Alternatively,
one can fix & do a single numerical integration of (11.10), and then search for values
of k for which the determinant vanishes. Provided that one has not been so unfortunate
as to choose & in an energy gap, such values of k can always be found, and in this
way the constant-energy surfaces can be mapped out.

Various ingenious techniques have been used to minimize the mismatch of the
wave function at the boundaries due to the fact that the boundary conditions can
only be imposed at a finite number of points; such cleverness, and the ability of
computers to handle large determinants, have led to cellular calculations of very high
accuracy,'” producing band structures in substantial agreement with some of the
other methods we shall describe.



The most famous application of the cellular method is the original calculation by
Wigner and Seitz of the lowest energy level in the valence band of sodium metal.
Since the bottom of the band is at k = 0, the exponential factor disappears from the
boundary conditions (11.7) and (11.8). Wigner and Seitz made the further approxi-
mation of replacing the Wigner-Seitz primitive cell by a sphere of radius r, with the
same volume, thereby achieving a boundary condition with the same spherical sym-
metry as the potential V(r). They could then consistently demand that the solution
Y (r) itself have spherical symmetry, which requires that only the single term | = 0,
m = 0 be retained in (11.11). Under these conditions the boundary conditions reduce
to

%0/(ro) = 0. (11.12)

Thus the solutions to the single equation (11.10) for [ = 0, subject to the boundary
condition (11.12), give the spherically symmetric cellular wave functions and energies.

Note that the problem has the same form as an atomic problem except that the
atomic boundary condition—that the wave function vanish at infinity—is replaced
by the cellular boundary condition—that the wave function have a vanishing radial
derivative at r,. The 3s" atomic and cellular wave functions are plotted together in
Figure 11.4. Note that the cellular wave function is larger than the atomic one in
the interstitial region, but differs from it very little in the core region.




Cellular

Figure 11.4
Comparison of 3s* cellular (solid curve) and atomic (dashed curve)
wave functions for sodium. |



There are perhaps two major difficulties with the cellular method:

The computational difficulties involved in numerically satisfying a boundary
condition over the surface of the Wigner-Seitz primitive cell, a fairly complex
polyhedral structure.

The physically questionable point of whether a potential representing an isolated
ion is the best approximation to the correct potential within the entire Wigner—
Seitz primitive cell. In particular, the potential used in the cellular calculations

has a discontinuous derivative whenever the boundary between two cells is
crossed (Figure 11.5). whereas in actual fact the potential is quite flat in such
regions.
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Figure 11.5

The cellular method potential has a discontinuous derivative
midway between lattice points, but the actual potential 1s quite
flat there.



A potential that overcomes both objections is [the muffin-tin potential,| which is
taken to represent an isolated ion within a sphere of specified radius r, about each lat-
tice point, and taken to be zero (i.e., constant) elsewhere (with r, chosen small enough
that the spheres do not overlap). (See Figure 11.6.) The muffin-tin potential mitigates
both problems, being flat in the interstitial regions, and leading to matching conditions
on a spherical rather than a polyhedral surface.

Formally, the muffin-tin potential can be defined (for all R) by:

Urx) = V(r — R|), when|r — R| <ry (the core or atomic region),
V(re) =0, when|r — R| > ry, (the interstitial region), (11.13)

where r, is less than half the nearest-neighbor distance."?

If we agree that the function V(r) is zero when its argument exceeds r,, then we
can write U(r) very simply as

U =Y V(r — R|) (11.14)

Two methods are in wide use for computing the bands in a muffin-tin potential: the
augmented plane-wave (APW) method and the method of Korringa, Kohn, and

Rostoker (KKR).
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Figure 11.6 (b)

(a) The muffin-tin potential, plotted along a line of ions. (b) The
_muffin-tin potential is constant (zero) in the interstitial regions and
represents an isolated ion in each core region.




